Effect of the welding heat input on residual stresses in butt-welds of dissimilar pipe joints
اثر ورودی حرارت جوشکاری بر تنشهای پسماند در جوشهای لب به لب اتصالات لوله غیرمشابه
ABSTRACT
This study used finite element techniques to analyse the thermo-mechanical behaviour and residual stresses in dissimilar butt-welded pipes. The residual stresses at the surface of some weld specimens were measured experimentally by using the hole-drilling method. The results of the finite element analysis were compared with experimentally measured data to evaluate the accuracy of the finite element modelling. Based on this study, a modelling procedure with reasonable accuracy was developed. The developed finite element modelling was used to study the effects of welding heat input on magnitude and distribution of welding residual stresses in butt-welded pipes made of ferritic and austenitic steels. The hoop and axial residual stresses in dissimilar pipe joints of 8 mm thick for V-groove shape were studied. It is shown that the welding heat input has a significant effect on magnitude and distribution of residual stresses in the stainless steel side of the studied joints.
ادامه مطلب ...
Numerical and experimental study of thermally induced residual stress in the hybrid laser–GMA welding process
مطالعه عددی و تجربی تنش پسماند حرارتی در فرآیند جوشکاری لیزری هیبریدی-GMA
ABSTRACT
A model based on a double-ellipsoidal volume heat source to simulate the gas metal arc welding (GMAW) heat input and a cylindrical volume heat source to simulate the laser beam heat input was developed to predict the temperature field and thermally induced residual stress in the hybrid laser–gas metal arc (GMA) welding process. Numerical simulation shows that higher residual stress is distributed in the weld bead and surrounding heat-affected zone (HAZ). Effects of the welding speed on the isotherms and residual stress of the welded joint are also studied. It is found that an increase in welding speed can reduce the residual stress concentration in the as-weld specimen. A series of experiments has been performed to verify the developed thermo-mechanical finite element model (FEM), and a qualitative agreement of residual stress distribution and weld geometrical size is shown to exist.
ادامه مطلب ...
Effect of Vibration during GTAW Welding on Microstructure and Mechanical Properties of Ti6Al4V
تاثیر ارتعاش در طی جوشکاری GTAW روی ریزساختار و خواص مکانیکی Ti6Al4V
ABSTRACT
The drive to improve weld quality and process parameters demands the use of improved welding tech niques and materials [1]. Titanium and its alloys are considered to be the best engineering metals for indus trial applications because of their excellent strengthto weight ratio, high fatigue life, toughness, resistance to corrosion and good fatigue strength [2, 3].
Welding methods such as gas tungsten arc, resis tance, and diffusion welding have been developed in response to the expansion of the titanium industry.
Titanium alloys easily absorb harmful gases because of their high chemical activity, resulting in poor mechanical properties and unstable structure [4, 5]. Gas tungsten arc welding is the preferred method for avoiding these deficiencies [6]. The weld ing of titanium alloys often increases grain size in the welded metal and heat affected zones [7]. Fusion zones typically exhibit coarse columnar grains in response to prevailing thermal conditions during welded metal solidification [6]. These columnar grains produce inferior mechanical properties in the welds [1]. Methods of weld grain refinement include inocu with heterogeneous nucleants, surface nucleation induced by gas impingement, introduction of physical disturbance through techniques such as elec tromagnetic stirring [4]. Vibratory techniques, and pulsed current welding techniques [8].
ادامه مطلب ...