Pulsed Eddy Current Inspection of Support Structures
in Steam Generators
بازرسی جریان گردابی پالسی برای سازه های نگهدارنده در ژنراتورهای بخار
ABSTRACT
Degradation and fouling of support structures in nuclear steam generators (SGs) can lead to SG tube damage and loss of SG efficiency. Inspection and monitoring of support structures combined with preventative maintenance programs can alleviate these effects and extend SG life. Conventional eddy current inspection technologies are extensively used for detecting and sizing indications from wall loss, frets at supports, cracks and other degradation modes in the tubes, as well as assessing the condition of support structures. However, these methods have limited capabilities when more than one degradation mode is present simultaneously, or when combined with fouling. Pulsed eddy current combined with principal components analysis (PCA) was examined for inspection of 15.9 mm (5/8") Alloy-800 tubes and surrounding stainless steel (SS410) support structures. Clear separation of PCA scores associated with tubes from those associated with ferromagnetic SS410 supports permitted measurement of tube-to-support gaps, in either the presence of tube fretting or variation of relative position of the tube within SS410 supports. For concentric tubes, frets could be sized independently of SS410 hole diameter variations, which in other materials could represent support corrosion. Capability to clearly separate scores was attributed to large differences in relaxation times for diffusion of transient fields through the tube compared with diffusion into the ferromagnetic support structure.
Evaluation of crack depth using eddy current techniques
with GMR-based probes
ارزیابی عمق ترک با استفاده از تکنیک های جریان گردابی با پروب ها بر پایه - GMR
ABSTRACT
This paper presents experimental and simulated results obtained using the eddy current nondestructive method to conclude about the depth of linear cracks machined on an aluminum plate. Experimental tests were performed with a sinusoidal excitation field of fixed-amplitude and with a giant magnetoresistance-based sensor to measure the resultant magnetic field on the plate surface. To validate and better insight the experimental results, numerical simulations have been carried out with a commercial program for conditions similar to the experimental case studies. A scheme to infer about crack depth is proposed.