Microstructure and mechanical properties of
friction spot welding aluminium–lithium 2A97 alloy
ریزساختار و ویژگیهای مکانیکی جوشکاری اصطکاکی نقطهای آلیاژ آلومنیوم-لیتیم 2A97
ABSTRACT
In this study, we investigated the microstructure and mechanical properties in different regions of the friction spot welded 2A97 aluminium-lithium alloy subjected to different heat treatment processes. The 2.0. mm thick hot-rolled sheet of 2A97 alloy was successfully welded using friction spot welding method with optimised welding parameters. Afterwards, the as-welded 2A97 joints experienced two subsequent heat treatment procedures: solution and ageing; directly ageing. The corresponding microstructure and mechanical properties of the heat-treated specimens were studied by means of optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM), hardness test and tensile test. The results show that the mechanical properties of the 2A97 joints before and after heat treatment were significantly modified, which was mainly related to fine-grained microstructure, size and type of precipitates, and dislocation density. Compared to the base material and the material that only experienced direct ageing, the whole friction spot welded 2A97 joint after solution and ageing treatment delivered better mechanical properties.
ABSTRACT
The use of inertia welding in the aerospace industry has been steadily increasing owing to the signifi cant improvements it provides in joint quality, compared with the use of fusion welding. This chapter introduces the process, with respect to its operation, parameters, differences from other friction welding techniques and equipment. It also explains the application of the technique and the selection of the process parameters, and the different mathematical, analytical and numerical approaches that are used to model the thermal fi elds and residual stress development. Details of the microstructural, mechanical properties and residual stress development in inertia friction-welded Ni-based superalloys, titanium alloys, steels and other alloys are also discussed.
ادامه مطلب ...